C1 Coordinate Geometry and Transformations

- June 2010 qu.9 1.
 - The line joining the points A(4, 5) and B(p, q) has mid-point M(-1, 3). Find p and q. (i) [3]

AB is the diameter of a circle.

- (ii) Find the radius of the circle.
- (iii) Find the equation of the circle, giving your answer in the form $x^2 + y^2 + ax + by + c = 0$. [3]
- Find an equation of the tangent to the circle at the point (4, 5). (iv)
- 2. Jan 2010 qu.2

The graph of y = f(x) for $-2 \le x \le 4$ is shown above.

(i) Sketch the graph of y = 2f(x) for $-2 \le x \le 4$ on the axes below.

- (ii) Describe the transformation which transforms the graph of y = f(x) to the graph of y = f(x - 1).
- 3. Jan 2010 qu.6

Not to scale

The diagram shows part of the curve $y = x^2 + 5$. The point A has coordinates (1, 6). The point B has coordinates $(a, a^2 + 5)$, where a is a constant greater than 1. The point *C* is on the curve between *A* and *B*.

- Find by differentiation the value of the gradient of the curve at the point *A*. (i)
- The line segment joining the points A and B has gradient 2.3. Find the value of a. [4] (ii) [1]
- (iii) State a possible value for the gradient of the line segment joining the points A and C.

[2]

[2]

[2]

[2]

[5]

4. June 2009 qu.8

A circle has equation $x^2 + y^2 + 6x - 4y - 4 = 0$.

- (i) Find the centre and radius of the circle.
- (ii) Find the coordinates of the points where the circle meets the line with equation y = 3x + 4. [6]

[3]

[2]

[2]

[2]

[2]

5. June 2009 qu.6

- (i) Sketch the curve $y = -\sqrt{x}$. [2]
- (ii) Describe fully a transformation that transforms the curve $y = -\sqrt{x}$ to the curve $y = 5 \sqrt{x}$. [2]
- (iii) The curve $y = -\sqrt{x}$ is stretched by a scale factor of 2 parallel to the *x*-axis. State the equation of the curve after it has been stretched. [2]

6. June 2009 qu.7

(i) Express
$$x^2 - 5x + \frac{1}{4}$$
 in the form $(x - a)^2 - b$. [3]

(ii) Find the centre and radius of the circle with equation
$$x^2 + y^2 - 5x + \frac{1}{4} = 0.$$
 [3]

- 7. June 2009 qu.9
 - A is the point (4, -3) and B is the point (-1, 9).
 - (i) Calculate the length of *AB*.
 - (ii) Find the coordinates of the mid-point of *AB*.
 - (iii) Find the equation of the line through (1, 3) which is parallel to *AB*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [4]

8. Jan 2009 qu.4

(i) Sketch the curve
$$y = \frac{1}{x^2}$$
. [2]

- (ii) The curve $y = \frac{1}{x^2}$ is translated by 3 units in the negative *x*-direction. State the equation of the curve after it has been translated. [2]
- (iii) The curve $y = \frac{1}{x^2}$ is stretched parallel to the *y*-axis with scale factor 4 and, as a result, the point *P*(1, 1) is transformed to the point *Q*. State the coordinates of *Q*. [2]

9. Jan 2009 qu.7

The line with equation 3x + 4y - 10 = 0 passes through point A(2, 1) and point B(10, k).

- (i) Find the value of k.
- (ii) Calculate the length of *AB*.

A circle has equation $(x - 6)^{2} + (y + 2)^{2} = 25$.

(iii)	Write down the coordinates of the centre and the radius of the circle.	[2]
(iv)	Verify that AB is a diameter of the circle.	[2]

10. June 2008 qu.2

- (i) The curve $y = x^2$ is translated 2 units in the positive *x*-direction. Find the equation of the curve after it has been translated. [2]
- (ii) The curve $y = x^3 4$ is reflected in the *x*-axis. Find the equation of the curve after it has been reflected. [1]

11. June 2008 qu.9

- (i) Find the equation of the circle with radius 10 and centre (2, 1), giving your answer in the form $x^2 + y^2 + ax + by + c = 0$.
- (ii) The circle passes through the point (5, k) where k > 0. Find the value of k in the form $p + \sqrt{q}$. [3]
- (iii) Determine, showing all working, whether the point (-3, 9) lies inside or outside the circle. [3]

[3]

[5]

[2]

[4]

[3]

[6]

(iv) Find an equation of the tangent to the circle at the point (8, 9).

12. Jan 2008 qu.2

- (i) Write down the equation of the circle with centre (0, 0) and radius 7. [1]
- (ii) A circle with centre (3, 5) has equation $x^2 + y^2 6x 10y 30 = 0$. Find the radius of the circle. [2]

13. Jan 2008 qu.7

- (i) Find the gradient of the line *l* which has equation x + 2y = 4. [1] (ii) Find the equation of the line parallel to *l* which passes through the point (6, 5), giving your
- answer in the form ax + by + c = 0, where a, b and c are integers. [3]
- (iii) Solve the simultaneous equations $y = x^2 + x + 1$ and x + 2y = 4. [4]

14. Jan 2008 qu.5

- (i) Sketch the curve $y = x^3 + 2$. [2]
- (ii) Sketch the curve $y = 2\sqrt{x}$. [2]
- (iii) Describe a transformation that transforms the curve $y = 2\sqrt{x}$ to the curve $y = 3\sqrt{x}$. [3]

15. Jan 2008 qu.9

The points A and B have coordinates (-5, -2) and (3, 1) respectively.

(i)	Find the equation of the line AB, giving your answer in the form $ax + by + c = 0$.	[3]

(ii) Find the coordinates of the mid-point of *AB*.

The point *C* has coordinates (-3, 4).

(iii)	Calculate the length of AC, giving your answer in simplified surd form.	[3]
()	euronine une rengui er rie, greing jour uns ver in simplifieu sura renne	[•]

(iv) Determine whether the line AC is perpendicular to the line BC, showing all your working. [4]

16. June 2007 qu.9

The circle with equation $x^2 + y^2 - 6x - k = 0$ has radius 4.

(i) Find the centre of the circle and the value of *k*.

The	points A (3, a) and B (-1, 0) lie on the circumference of the circle, with $a > 0$.	
(ii)	Calculate the length of <i>AB</i> , giving your answer in simplified surd form.	[5]
(iii)	Find an equation for the line AB.	[3]

17. Jan 2007 qu.9

A is the point (2, 7) and B is the point (-1, -2).

- (i) Find the equation of the line through A parallel to the line y = 4x 5, giving your answer in the form y = mx + c. [3]
- (ii) Calculate the length of *AB*, giving your answer in simplified surd form.
- (iii) Find the equation of the line which passes through the mid-point of *AB* and which is perpendicular to *AB*. Give your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

18. Jan 2007 qu.5

The graph of y = f(x) for $-1 \le x \le 4$ is shown above.

- (i) Sketch the graph of y = -f(x) for $-1 \le x \le 4$.
- (ii) The point P(1, 1) on y = f(x) is transformed to the point Q on y = 3f(x). State the coordinates of Q.
- (iii) Describe the transformation which transforms the graph of y = f(x) to the graph of y = f(x + 2).[2]

[2]

[2]

[3]

19. June 2006 qu.9

The points A and B have coordinates (4, -2) and (10, 6) respectively. C is the mid-point of AB. Find

(i) the coordinates of C,[2](ii) the length of AC,[2](iii) the equation of the circle that has AB as a diameter,[3](iv) the equation of the tangent to the circle in part (iii) at the point A, giving your answer in the
form ax + by = c.[5]

20. Jan 2006 qu.9

The points A, B and C have coordinates (5, 1), (p, 7) and (8, 2) respectively.

(i) Given that the distance between points *A* and *B* is twice the distance between points *A* and *C*, calculate the possible values of *p*.
(ii) Given also that the line passing through *A* and *B* has equation y = 3x - 14, find the coordinates of the mid-point of *AB*.

21. June 2005 qu.3

(i)	Sketch the curve $y = x^3$.	[1]
(ii)	Describe a transformation that transforms the curve $y = x^3$ to the curve $y = -x^3$.	[2]
(iii)	The curve $y = x^3$ is translated by p units, parallel to the x-axis. State the equation of the curve	
after i	t has been transformed.	[2]

- after it has been transformed.
- **22.** June 2005 qu.8

(i)	Describe completely the curve $x^2 + y^2 = 25$.		[2]
		· ·	

(ii) Find the coordinates of the points of intersection of the curve $x^2 + y^2 = 25$ and the line 2x + y - 5 = 0. [6]

23. June 2005 qu.9

(i)	Find the gradient of the line l_1 which has equation $4x - 3y + 5 = 0$.	[1]
(ii)	Find an equation of the line l_2 , which passes through the point (1, 2) and which is perpendicular	
	to the line l_1 , giving your answer in the form $ax + by + c = 0$.	[4]

The line l_1 crosses the x-axis at P and the line l_2 crosses the y-axis at Q.

- (iii) Find the coordinates of the mid-point of PQ.
- (iv) Calculate the length of *PQ*, giving your answer in the form $\frac{\sqrt{a}}{b}$, where a and b are integers. [3]